Monotone circuits for monotone weighted threshold functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotone circuits for monotone weighted threshold functions

Weighted threshold functions with positive weights are a natural generalization of unweighted threshold functions. These functions are clearly monotone. However, the naive way of computing them is adding the weights of the satisfied variables and checking if the sum is greater than the threshold; this algorithm is inherently non-monotone since addition is a non-monotone function. In this work w...

متن کامل

2 Monotone Functions and Monotone Circuits

In the last lecture we looked at lower bounds for constant-depth circuits, proving that PARITY cannot be computed by constant-depth circuits, i.e. PARITY / ∈ AC0. General circuit lower bounds for explicit functions are quite weak: the best we can prove after years of effort is that there is a function, which requires circuits of size 5n − o(n). In this lecture we will examine what happens if we...

متن کامل

Monotone Boolean formulas can approximate monotone linear threshold functions

We show that any monotone linear threshold function on n Boolean variables can be approximated to within any constant accuracy by a monotone Boolean formula of poly(n) size.

متن کامل

Directed Monotone Contact Networks for Threshold Functions

In this note we consider the problem of computing threshold functions using directed monotone contact networks. We give constructions of monotone contact networks of size (k − 1)(n − k + 2) dlog(n− k + 2)e computing T k , for 2 ≤ k ≤ n − 1. Our upper bound is close to the Ω(kn log(n/(k−1))) lower bound for small thresholds and the k(n−k+1) lower bound for large thresholds. Our networks are desc...

متن کامل

Weighted Multidimensional Inequalities for Monotone Functions

Let + := {(x1, . . . , xN ) ; xi 0, i = 1, 2, . . . , N} and + := + . Assume that f : + → + is monotone which means that it is monotone with respect to each variable. We denote f ↓, when f is decreasing (= nonincreasing) and f ↑ when f is increasing (= nondecreasing). Throughout this paper ω, u, v are positive measurable functions defined on + , N 1. A function P on [0,∞) is called a modular fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Processing Letters

سال: 2006

ISSN: 0020-0190

DOI: 10.1016/j.ipl.2005.09.008